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1. INTRODUCTION

Let {an,bn},~X)=o be a sequence of complex numbers such that an#O for
n > 0. We define a sequence of functions {pn} := 1 by the recurrence formula

n =0,1,2, ... , (1.1)

where Po and P -1 are given initial functions. In general, Pn is not a
polynomial but if we set

po=const>O and P-1=0, (1.2)

then Pn is, in fact, a polynomial of precise degree n. Given a positive Borel
measure IX on the real line whose moments are finite and whose support is
an infinite set, the system of orthogonal polynomials {Pn(IX)}:=o is defined
by the orthogonality relation

n,m~O, (1.3)

and they satisfy the three-term recurrence (1.1) with the recurrence
coefficients

(1.4 )

and the initial condition (1.2).
Following the notation in [10],1 we define the class M(b, a), where a ~°

and bE IR, by

M(b,a)={{an,bn}:=o:an>O,bnEIR, lim an=a/2and lim bn=b}.
n----+-oo n--+oo

(1.5)

We also say that the measure IX is in M(b, a) if the corresponding
recurrence coefficients {an(IX), bn(IX)}:=oEM(b, a). By a theorem of
Blumenthal (cf. [1; 10, p. 23]), ifIXEM(b,a) with a>O, then the support
of the measure IX satisfies supp( IX) = [b - a, b + a] u S, where S is bounded
and countable with only possible accumulation points in {b ± a}. It is well

1 We point out that there is a slight difference between the notations in [lOland subsequent
works, including the present one; namely the parameters a and b in [10] have subsequently
been renamed to b and a, respectively.
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known that for every positive Borel measure a on the real line and for
every real x the inequality

(1.6)

holds. 2 Hence, if x is a mass-point of a then Pn(a, x) ~ 0 as n ~ 00, so that
for every 0 < P < 00 we have

l' !Pn(a, xW - 0
1m "V n - 1 I ( )IP - ,

n~a:: .t...k=O Pk a, x
X E supp(a)\[b - a, b + a], (1.7)

whenever a E M(b, a). It was proved in [10, p. 11, Theorem 3.1.9] that if
a E M(b, a) with a> 0, then

lim max [a2-(x-b)2J n~~(a'2x) O. (1.8)
n~ co XE [b-a,b+a] Lk~O Pk(rx, x)

Moreover, it has been conjectured that the uniform convergence in (1.8)
remains true even if the factor (a 2

- (x - b )2) is dropped. This is known
be truefor Jacobi polynomials (see [10, p. 83]), where an = ~ + O(n -2) and
bn = O(n -2) (see [17, p. 71] or [2, p. 153]).

The primary purpose of our paper is to prove this conjecture in a general
setting by allowing complex valued recurrence coefficients in (1.1), by
changing the squares to arbitrary positive powers P, and by relaxing (1.2)
to arbitrary finite initial value conditions. Furthermore, in case of
orthogonal polynomials the uniform convergence is to be proved true on
supp(a) = [b - a, b + a] u S, which could differ from [b - a, b+ a] by
countably many points. The main theorems are stated in Section 2, and
they are proved in Section 3. Some related applications are discussed in
Section 4.

2. UNIFORM CONVERGENCE THEOREMS

Similarly to (1.5), we define CM(b, a) by

CM(b,a)={{ambn}~o:an(#O)EC,bnEC, lim a n =a/2and lim bn=b}.
n~oo n~oo

(2.1 )

2 If the moment problem has a unique solution then the sum of the series in (1.6) equals
[iX({X})]-l (see, e.g., [3, Sect. n.2, p. 25J).
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(2.2)

In what follows, for complex a and b we define the complex interval
[b - a, b + aJ as the line segment connecting the points b - a and b + a,
that is,

[b - a, b + aJ == {b + ta: -1 ~ t ~ I}.

By Poincare's theorem [13J, limn~ 00 Pn+ 1(x)/Pn(x) exists for all x outside
the complex interval [b - a, b + aJ whenever {an' bn}':~o E CM(b, a) with
a, bEe and a#- 0, and the limit equals to one of the roots z ± of the
characteristic equation

2xz= az2 + 2bz + a.

On the other hand, limn ~ 00 Pn + 1(x)/Pn(x) does not need to exist for
xE[b-a, b+a]. For instance, if a>O, bEIR, P_I=O, and Po=l then
{Pn} ':~ 1 is an orthogonal polynomial system whose zeros are dense in
[b-a, b+aJ (cf. [1,9, lOJ), and, therefore, the above limits do not exist
for x E (b - a, b + a). The main result of our paper is the following

THEOREM 2.1. Let {an, bn} ':=0 E CM(b, a) with a, bEe, a#- 0, and let
the sequence of functions {Pn} ':= 1 be generated by (1.1). Then for every
O<p<oo

(1) if the initial functions Po and P -I are finite in [b - a, b + aJ, and
Z={XEIR: IPo(x)I+lp_l(x)I=O}, then

lim su IPn(xW = 0
n~oo XE[b-a,~+a]\zL~::~ IPk(xW

(if the initial functions Po and P -I are polynomials then we can take Z = 0
in (2.2)).

(2) if {Pn(a)}':=o is an orthogonal polynomial system associated with
a positive measure a E M (b, a), where a > 0 and b E IR, then

(2.3)

The proof will be given in Section 3. Here we show why Z = 0 when Po
and P-I are polynomials. The set Z defined in Theorem 2.1 is the set of
points x for which Pn(x) = 0 for every n = -1, 0, 1, 2, .... It is quite natural
to remove Z because otherwise in (2.2) the division would be impossible.
We can take Z=0 as long as we require O<IPo(x)I+lp_l(x)l<oo for
x E [b - a, b + a]. In the case when Po and P -I are polynomials, we let d
be the greatest common divisor of Po and P -I' Then, d divides all Pn for
n;;:: -1 because of the three-term recurrence (1.1). Hence all common zero
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factors can be cancelled in (2.2) and we can therefore assume that Po and
P -1 have no common zero factors, that is, Z = 0. If we have orthogonal
polynomials, then Z = 0 because Po = const > O. The difficulty in proving
the second part of Theorem 2.1 is that supp(a)\[b - a, b +a] may not be
finite, as a matter of fact, some of the most interesting and most challenging
cases, such as certain Pollaczek measures, have infinitely many mass-points
outside the interval [b - a, b + a].

Since a i= 0 in Theorem 2.1, we can map the complex interval [b - a, b + a]
into the interval [-1, 1] by x= (x - b)la. This map gives rise to a
new set of functions {Pn}:'~o, where Pn{x)= Pn(x). The system {Pn}:'=o
satisfies (1.1 ) with a new set of recursion coefficients {an = an/a,
bn=(bn-b)ja}:,=o, where limn-->ooan=~ and limn-->oobn=O, that is,
{an, bn}:'~OECM(O, 1). Therefore, we can always assume that a= 1 and
b = 0 as long as a i= O. Hence, instead of (2.2) in Theorem 2.1, we only need
to prove

(2.4 )

Remark. The unit circle analogue of (2.3) with P = 2 was first investigated
by L. Va. Geronimus who in [4, p. 38, Theorem 3.4,andp. 40 formula (3.31)]
proved a pointwise (but not uniform) version of it under the condition that
the corresponding measure is in the Szego class, that is, the logarithm
of the absolutely continuous component of the measure is integrable.
Interestingly, Geronimus never emphasizes the pointwise (but not uniform)
nature of his result, and, thus, a superfluous examination of his results may
give the impression that his estimates are uniform. He even included such
an estimate in [4, p. 198, No. I, Table II] with no reference to the proof
on [4, pp. 38-40]. One of the innocent victims of this was [15, p. 574,
paragraph directly following formula (4.3)] which refers to [4, p. 40,
Theorem 3.5] in the (false) belief that it provides uniform estimates for
orthogonal polynomials on the unit circle. The complete unit circle version
of (2.3) with P = 2 was proved in [8, p. 55, Theorem 4]. Since the Szego
recursion formula for orthogonal polynomials on the unit circle has a
somewhat simpler underlying structure than the three-term recurrence
(1.1), the unit circle version of (2.3) with P = 2 was much easier to prove
than (2.3).

In view of Poincare's theorem [13] on the asymptotic behavior of the
ratios in + din of solutions Un} of linear difference equations with variable
coefficients, one can easily prove analogues of Theorem 2.1 for x outside
the complex interval [b - a, b + a]. Surprisingly, the latter can provide a
complete characterization of the class CM(b, a). Here we will only prove
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a particularly elegant version of such characterization theorems which
parallels some results in [10, p. 32, Theorem 4.1.12].

THEOREM 2.2. Let {Pn(a)}:'= 0 be an orthogonal polynomial system
associated with a positive measure a supported on a compact set of the real
line. Let °< p < 00, a> 0, and bE lit Then a E M(b, a) if and only if

lim IPn(a,xW =IX-b +J(X-b)2 -liP -1 (2.5)
n~ 00 22Z:6IPk(a, xW a a

holds uniformly for every compact set K c C\supp(a). When p is a positive
integer, (2.5) remains true with the absolute value signs dropped on both
sides.

3. THE PROOFS

In this section, we will demonstrate Theorems 2.1 and 2.2. As we already
remarked in Section 2, it is enough to consider Theorem 2.1 for the case
CM(O, 1). In fact, as will be seen from the next lemma, the problem can
further he reduced from an -+ ! and bn -+ °as n -+ 00 to the extremal case,
that is, to an == ! and bn== 0.

LEMMA 3.1. Let 0< p < 00. Suppose {pd Z'=o is generated by (1.1) with
recurrence coefficients {an, bn}:'=o and finite initial function Po and P-l'
Let Z= {XE IR: Ip-l(X)1 + IPo(x)1 =O}. If {an> bn}:'~oE CM(O, 1), thenfor
every K c IR and every positive integer L we have

(3.1 )

where {Rk(c,s, ')}Z'~o is the polynomial system generated by the following
recurrence relation

R_1(c, s, x) = c, Ric, s, x) = s.
(3.2)

Proof Let L ~ 1 be fixed, and let n > L. By definition, x¢: Z if and only
if Ip_l(X)1 + IPo(x)1 #0. In view of the three-term recurrence relation in
(1.1), this means that IPk-l(X)1 + IPk(x)1 #0 for all k=O, 1, .... Hence,
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(3.3 )

where {Rk,n(c, s, x)}%'~o denotes a perturbation of {Rk(c, s, x)}%'=o' More
specifically, the recurrence coefficients for {Rk,n(C,S,x)}%,~o are
{an+k> bn+d %'~o, and the recurrence relation is given by

xRk,n(c, S, x) = ak+ 1 +nRk+ l,n(C, S, x) + bk+nRk,n(c, S, x)

+ ak+nRk-l,n(C, s, x),

R_1,n(c,s,x)=C,

Since L is fixed, we have

Ro,n(c, s, x) = s,

lim sup IRk,n(c,s,x)-Rk(c,s,x)I=O
n~ 00 IcIP+ Is!P= 1,xEK

for k= -1, 0, 1, 2, ..., L, because all Rk's and Rk,n's involved here are
polynomials in c, s, and x, because they are generated through finitely
many steps of three-term recursion, and because ak+n -7! and bk+n-7 0 as
n -700. Noting that Lt= -I IRk.n(c, S, x)IP): Icl P+ IslP = 1, we obtain

Taking the superior limit of both sides of (3.3), and using the above
equality, we obtain (3.1). I

In what follows we will prove that the right-hand side of (3.1) is
bounded from above by const(p)jL, from which part (1) of Theorem 2.1
follows immediately, and part (2) follows with an unexpected continuity
argument. To proceed we will need an auxiliary proposition.
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LEMMA 3.2. Let 0 < p < 00. Then

(3.4 )

holds for every positive integer L.

Proof Fix r/J E (0, 2n) and WEe. Assume without loss of generality that
0< r/J ~ n and Iwi ~ 1. Let w = reil/l with 0 ~ r ~ 1. Choose 0 ~ ko~ Land
0< Itol ~n such that

11- reilol = 11- rei(ko¢+!/J)I = max 11 - weik¢l.
O<:;k<:;L

It suffices to show

(3.5)

because (3.5) is stronger than (3.4). Define Al = {e it :41tl < Itol}, which is
an open arc containing 1 in the unit circle, and A_I = {e il : Ito I~
41tl ~4n}, which is a closed arc containing -1. Clearly, Al and A_I are
disjoint, and their union is the whole unit circle. Also, the arc length of A_I
is not less than 3n12, and that of Al is not bigger than nl2 because Itol ~ n.
We will show that among the points ei(k¢+!/J), k=O, 1, ..., L, there are
substantially many of them lying on A -1' To be more specific, let
E= {k:O~k~L, ei(k¢+!/J)EA_r}. Then

L
IEI~4' (3.6)

where 1·1 denotes the cardinality of a set. Once (3.6) is proved, we can show
(3.5) quite easily. Indeed, for every k E E the inequality 11- rei(k¢+!/J)1 2=
1 - 2r cos(kr/J + l/J) + r2~ 1 - 2r cos(to/4 ) + r2 = 11 - reito/412 holds since
Icos(kr/J+l/J)I ~cos(to/4) when kEE. Thus,

11 - re ito IP 1 [I - re ito IP
Lf=o 11-rei(k¢+!/J)IP~1Ef 11_reito/4IP'

If for every fixed Ito I~ n, the function f is defined by

(3.7)

1 - 2r cos to + r2

1 - 2r cos(to/4 ) + r2'

then the derivative of f is

f'(r) = 2(I-r2)(cos(to/4)-cos to)
(1- 2r cos(to/4) + r2)2
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Obviously, f'(r) ~ 0 when 0::::; r::::; 1. Therefore, for every fixed Itol ::::; n, f is
an increasing function of r in [0, 1J, which justifies the inequality

11 - re
ito I 11 - e

ito I
11 - re ito/4 1 ::::; 11 - e ito/4 1

to to
4 cos 4" cos 8"::::;4. (3.8)

From (3.6), (3.7), and (3.8) we obtain (3.5), which implies (3.4) by the
definition of k o and to.

It remains to prove (3.6). Let us first address the case ko ::::; L12, and
consider the equidistant points ?i(k¢ + ljJl, k = k o, k o + 1, ..., L, on the unit
circle. We will show that at least half of these points belong to A _ 10

because the closed arc A_I is longer than the open arc AI' We use the
mapping t f-+ e it to wrap the unit circle counterclockwise with the interval
(or rope) [koift + l/J, (L + 1)ift + l/J). For each integer k in {ko, k o+ 1, ..., L},
call kift + l/J a knot on the rope. The process starts with the first knot
eo = koift + l/J, whose image ei(ko¢ + ljJ) = e ito is in A -1' In the counter
clockwise direction, first we cover the rest of A_I' which contains the arc
{e it

; -I tol ::::; t::::; -I toI/4}, and then cover Al' Stop wrapping at eiltol/4 just
before we reach A _lor at the end of the rope if the rope ends before
we reach eiltol/4. Denote the portion of the rope we just used by
II = [koift + l/J, ( 1 ) = [80 , 8d· It is clear that in this portion there are at
least as many knots of II wrapped to A -1 as to AI, because the closed arc
{e it

: -I to I ::::; t::::; -I to 1/4} is longer than the open arc A 1 whose length is
Ito 1/2, and the knots are equidistant. Now continue wrapping, COver A_I
and AI' and again stop at the point eiltol/4 or at the end of the rope,
whichever comes first. Let 12 = [8 1 , ( 2 ) be the portion we just used. We
claim that in this second portion there are at least as many knots of /2
wrapped to A -1 as to AI' If there are no knots of 1"2 wrapped to A 1, the
claim is trivially true. So assume that there is at least one knot of 12

wrapped to A l' Since A -1 was wrapped first, its arc length is not less than
3n12, and the distance between consecutive knots in the rope is ift::::; n, we
conclude that there is at least one knot wrapped on A -1 before any knot
on A l' Now if ift is greater than the arc length of AI, that is, ift ~ Ito 1/2, then
there can be at most one knot of 12 wrapped to the open arc AI' and the
claim is correct. Otherwise, 0 < ift < Ito 1/2::::; n12. In this case the first knot
of /2 is actually wrapped to the upper half circle part of A_I because
Ito 1/4 + ift ::::; nl4 + nl2 < n. In the counterclockwise direction the rest of A_I
contains the closed arc {e it

; -Itol ::::;t::::; -ltoI/4}, and it is longer than the
open arc Al whose length is Ito1/2. Since the knots are equidistant, there
must be at least as many knots of 12 wrapped to A ~ 1 as to AI, and the
claim is proved. Continue this process until the rope ends, and we find out
that there are at least as many knots of the whole rope wrapped to A_I as
to AI' This means that for at least half of the integer k's in {ko, k o+ 1, eo., L},
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the point ei(k1> +1/1) lies in A -1, that is, k E E. Therefore, IEI ~ (L - k o+ 1)/2.
Since k o~ L/2, we also have lEI ~ L/4 which proves (3.6).

For the case ko>L/2, we consider ei(k1>+1/Jl, k=ko, k o-l, ...,1, and wrap
the circle clockwise from korjJ + ljJ to 0· rjJ + ljJ. By repeating the argument
above we know that at least half of the knots in {krjJ + ljJ: k = ko, ko-1, ..., I}
will be wrapped to A_ 1 , and again, lEI ~ko/2>L/4. This completes the
proof of (3.6).

As discussed earlier, (3.6) proves (3.5) and (3.4). I
Now we are ready for the

Proof of Theorem 2.1. As mentioned in Section 2, we can assume
without loss of generality that either the recurrence coefficients
{an, bn},';")=o E CM(O, 1) or the measure 0: E M(O, 1), and, therefore, we will
prove (2.2) and (2.3) for a = 1 and b = 0.

Let L ~ 1 be a fixed integer, and let {Rk ( c, s, x)}.f'= ° be generated by
(3.2). When -1 < x < 1, the characteristic equation of the second order
difference equation (3.2) is 2xz = Z2 + 1, and it has two distinct solutions
z ± = e±ie with cos 8 = x and 0< 8 < n. Thus, for -1 < x < 1, the solution
to (3.2) is

k= -1,0,1,2, ... ,

where u and v depend on c, s, and x, but not on k. Since IcI P + IsI P = 1, we
have lui + Ivl #0. Hence,

k= -1,0,1'00"

where either rjJ = 28 or rjJ = -28, and Wand w depend on u and v. Therefore,

IRL(c, s, xW 11- weiL1>IP 11- weiL1>IP
""L IR (c s X)IP=""L 11_weik1>IP~""L 11-weik1>IP'
£..k~ -1 k" £..k= -1 /-k~O

By Lemma 3.2,

IRdc,s,x)IP ~4P+1

L:t~ -1 IRk(c, S, xW "" L
(3.9)

holds for - 1< x < 1. The above is actually true for -1 ~ x ~ 1 when
lei P + lsi P = 1 because of continuity.

For part (1) of Theorem 2.1, we assume {an,bn}:~oECM(O, 1) and fix
an integer L~1. Then (3.1) holds with K=[-l,l], and (2.2) follows
from (3.1) and (3.9) because L can be arbitrarily large.

For part (2), again we fix L ~ 1. First we note that IRL(c, s, xW/
Lt=_1IRk(c,s,x)IP is uniformly continuous in c, s, and x when
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(3.10)

lei P+ lsi P= 1 and x E [ -2, 2J because {Rk(e, s, x)} ;'~o are polynomials
c, s, and x, and the denominator is not less than 1. Hence, for the fixed L,
there is a 0 < l5 ~ 1 such that

I
IRL(C, S, xW IRL(c', s', x')1 I 1

2:L-l IRk(c,s,xW-2:L_l IRk(e', s', x'W ~L'

whenever x, x' E [ -2, 2J, kiP + Isl P= 1, !c'IP + Is'l P= 1, and le- e'l +
Is-s'l + Ix-x'i ~l5. Combining (3.9) and (3.10) we obtain

(3.11)

Now let the measure c<EM(O, 1). Then {an(c<), bn(C()};;o~oECM(O, 1), and
Lemma 3.1 holds for the associated orthogonal polynomials {pd ;'~o with
K = [-1- l5, 1+ l5J, and Z = 0 because Po(x) = const > O. Following
(3.1) and (3.11), we have

-.- IPn(xW 4P+
2

hm sup ~--. (3.12)
n~oo xd-l-h.l+h] 2:~~o IPk(X)IP L

Recall that Blumenthal's theorem (cr. Section 1 and [1; 10, p. 23 J) claims
that if the measure C< E M(O, 1), then supp(C<)\ [ - 1- l5, 1+ (j J consists of at
most finitely many mass-points of c<. At each such point x, we have
L,;'~o !Pk(XW < 00 (cf. Section 1), thus, Pn(x) -7°as n -700. This implies
that

lim sup IPn(xW O. (3.13)
n~oo XEsupp(a)\[-l-h,l+h] L~=o IPk(X)IP

From (3.12) and (3.13),

-.- IPn(x)IP 4P + 2

hm sup ~--.
n~ 00 XEsupp(a) 2:~=o IPk(x)!P L

Finally, letting L -7 00, we obtain

We point out that in the denominator the upper limit of the summation is
n instead of n - 1. But with the following identity,

640/67/2-8
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we see that nand n - 1 makes no difference in the limit relation. This
finishes the proof of part (2) of Theorem 2.1 for a E M (0, 1). A similar
remark applies for part (1) as well. I

The next lemma will be used to prove Theorem 2.2.

LEMMA 3.3. Let {dn'" O} :~o be sequence of complex numbers depending
on some parameter set S, and let Ipl > 1 hold uniformly in E. Then

1· dn + 11m --=p
n~ 00 dn

1 n-l 1
~ lim - I dk =--

n ~ 00 dn k = 0 P - 1

uniformly in S

uniformly in E.

(3.14 )

The proof is elementary, and as such, we leave it to the reader.

Proof of Theorem 2.2. For P = 2 the "=" part of the theorem was
proved in [10, p. 31, Theorem 4.1.11, see A;]. If O<p< 00 is arbitrary,
then we proceed as follows. Poincare's theorem [13] on the asymptotic
behavior of the ratios fn + dfn of solutions {In} of linear difference equations
with variable coefficients was generalized for orthogonal polynomials in
[10, p. 33, Theorem 4.1.13]. This generalization consists of

1· Pn+l(a, x) x-b J(X-b)2 11m =--+ -- -,
n~ 00 Pn(a, x) a a

which holds uniformly on every compact set K c iC\supp(a), whenever
aEM(b, a) (for an alternative proof see [9, Theorem 3 and formula (16)]).
In view of (3.14), we can apply Lemma 3.3 with dk = IPk(a, xW to obtain
(2.5), and the limit in (2.5) is uniform on K.

Conversely, if formula (2.5) holds uniformly on compact subsets of
iC\supp(a), then by Lemma 3.3,

lim IPn+l(a,x)I=/X-b +J(X-b)2_ 1/.
n~oo Pn(a,x) a a

(3.15)

When x is real and it is located to the right of supp(a), then Pk(x) = IPk(x)1
for all k=O, 1, ..., and, hence, (3.14) holds as well. Therefore, by [10, p. 32,
Theorem 4.1.12], we have aEM(b, a).3

We remark that when P is a positive integer, the proof remains valid
with all the absolute value signs removed, and this takes care of the second
part of Theorem 2.2. I

3 As pointed out earlier, a and b play opposite roles in [10] than in the present paper.
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(4.0.1 )

is the nth Christoffel function associated with the measure a. It was shown
in [10] that for a E M(b, a) with a> 0 and bE IR, the limit relation

XE [b-a, b+a], (4.0.2)

has a number of applications such as estimating the growth of orthogonal
polynomials and Lebesgue functions of orthogonal series expansions,
comparative asymptotics for Christoffel functions, and so forth. Unfor
tunately, in [10, p. 11, Theorem 3.1.9] this limit was proved only locally
uniformly in (b - a, b + a). In view of our extension of uniform convergence
to the entire interval [b - a, b+ a] now we are able to improve many of
the applications of (4.0.2).

4.1. Orthogonal Polynomials of the Erdos and AI. Magnus Classes

COROLLARY 4.1.1. Let Ie IR be a compact interval. If a is an Erdos
measure on I, that is, supp(a) = I and a'(x) > 0 a.e. in I, then the corresponding
orthogonal polynomials {Pn(a)}::'= 0 satisfy

lim maxAn(a,x)p~(a,x)=O.
n......,. 00 XEI

(4.1.1 )

Proof Let 1= [b - a, b+a]. Since a is an Erdos measure, by a theorem
of Rahmanov (cf. [14,7]) we have limn~CX) an=a/2 and limn~CX) bn=b,
that is, a E M(b, a). Taking p = 2 in Theorem 2.1 and noting that Z = 0,
we immediately obtain (4.1.1). I

Next we apply a theorem of Alphonse Magnus [6] to obtain a uniform
convergence result for certain complex weights.

COROLLARY 4.1.2. Let Ie IR be a compact interval. Let w be a Magnus
weight in I, that is, w= gw, where g is a non-vanishing complex valued
continuous function in I and ill E L 1(I) is positive a.e. in I. Let f be the Stieltjes
transform of w, that is,

f(z)=f w(t)dt, z¢I.
I z- t
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Then the denominators {Pn} of the diagonal Pade approximants {Qn/Pn} of
f about 00 satisfy

(4.1.2)

for all 0 < p < 00.

Proof By [6, p. 34, Theorem 6.1], there is an integer N such that

(1) P k is a polynomial of precise degree k for k> N,

(2) J1PmPnda=(jnm, m>N, n>N,

(3) the three-term recurrence relation

xPk(x) = ak+IPk+ I(X) + bkPk(X) + ak Pk-l(X)

holds for all k ~ N, and

(4) limk~oo ak =a/2 and limk~oo bk=b, where 1= [b-a, b+a].

To apply Theorem 2.1 we just need a shift in the subscript. Note that
pk = P N + k (k ~ -1) satisfies the three-term recurrence (1.1) and the
recurrence coefficients have the required convergence property (2.1). By
part (1) of Theorem 2.1,

O<p< 00,

where it is understood that all common factors of PN -1 (x) and Pn(x) have
been cancelled in the division. Finally, replacing the lower limit in the sum
from k = N to k = 0 we obtain (4.1.2). I

Alphonse Magnus pointed out in a private communication to us that it
should be possible to prove that for n large enough Pnand Pn _ 1 have no
common zeros, and so probably there is no need for any cancellation. 4

4.2. Estimates of Orthogonal Polynomials and Lebesgue Functions

The following lemma immediately follows from the extremal property of
Christoffel functions (cr. [3, p. 25, Theorem 1.4.1, and p. 105, Theorem
3.3.4] ).

LEMMA 4.2.1. Let a> 0 and bE IR. If a satisfies

iX'(X) ~ C[a2- (x - b)2] -1/2, XE [a-b, a+b], (4.2.1 )

4 See Ihe proof of (2) in Theorem 2.1 which is right after the statement of Theorem 2.1 in
Section 2.
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then

(4.2.2)XE [a-b, a+b].
-I 2n

An (a, x) ~-,
nC

From Corollary 4.1.1 and Lemma 4.2.1 we obtain the following
pointwise estimate for orthogonal polynomials.

COROLLARY 4.2.2. Let a> 0 and bE R Let either supp(a) = [b - a,
b+a] or rxEM(b, a), and assume that a satisfies (4.2.1). Then

n= 1, 2, .." (4.2.3 )

uniformly for x E [b - a, b + a].

The estimate (4.2.3) is placed in proper prospective if we note that after
Rahmanov [15] disproved Steklov's conjecture on the uniform boundedness
of orthogonal polynomials whose weight functions satisfy w(x) ~
const(1 - X2)~ 1/2 for x E [ -1, 1], he also proved in [16J that in general
for such weights, even the estimate Pn(x) = O(n e

) in [ -1, 1] fails for some
<; < !. We also point out that it is mistakenly claimed [15, p. 594 J that the
unit circle analogue of (4.2.3) was proved in [4, p. 40, Theorem 3.5] (cf.
Remark in Section 2).

Our next result is about estimating the Lebesgue functions (that is,
norms)

Qn(a, x) = sup ISn(rx, f, x)1
11/1100<;; I

for partial sums
n~1

Sn(rx,j) = I Ck(rx,j) Pk(a)
k~O

of Fourier expansions in orthogonal polynomials, where the Fourier
coefficients are given by Ck(a, f) =J~ fpk( a) da.

In what follows, we define the function & by &( t) =J(_ co, t) drx.

COROLLARY 4.2.3. Let a> 0 and bE IR. Let a E M(b, a) (cf (1.5)), and
let the function &be uniformly continuous on a set Ll s; [b - a, b + a]. Then

lim sup An(rx, x) Q~(rx, x) = O.
n ......... etJ XEL1

(4.2.4 )

If, in addition, a satisfies (4.2.1) then

Qn(rx, x) = o(~), n= 1, 2, ',., (4.2.5)

uniformly for x E Ll.
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Proof From [12, p. 32 formula (4.14.8)].

An(lX, x) Q~(IX, x) <2[&(x + 8) - &(x - 8)J + 4a~(IX) 8-2An(lX, x)

X[p~(IX,X)+P~_l(IX,X)]f dlX
IR

for every 8> O. Applying Theorem 2.1 (cr. (4.0.1)), we obtain

lim sup An(lX, x) Q~(IX, x) <2 sup [&(x + 8) - &(x - 8)J
n~ 00 XEA xeLl

for every 8> O. Since the function & is uniformly continuous on A, we have

lim sup An(lX, x) Q~(IX, x) = O.
n-+oo xeLl

Finally, (4.2.5) follows form (4.2.4) and (4.2.2). I

4.3. Uniform Convergence of a Sequence of Positive Operators

The so called G operator was introduced in [10, p. 74, Sect. 6.2J (see
also [8, p. 53; 12, p. 19J), and it is defined by

(4.3.1 )

where An( IX) is the nth Christoffel function (cr. (4.0.1)), and Kn ( IX) is the nth
reproducing kernel, that is,

n-l
Kn(lX, x, t) = L Pk(IX, x) Pk(IX, t).

k~O

By the Christoffel-Darboux formula [17, p. 43 J

K( t)
= ()Pn(IX,X)Pn_l(lX,t)-Pn(lX,t)Pn_l(IX,X)

n~~ ~IX .
x-t

(4.3.2)

COROLLARY 4.3.1. Let a> 0 and b E~. If IX E M(b, a) and f E Loo(~) is
uniformly continuous on a set A 5; [b-a, b+aJ, then

lim sup IGn(IX,f, x)- f(x)1 =0. (4.3.3 )

Proof We could use Korovkin's theorem to prove this but a direct
proof is equally simple. It follows from the definition of the kernel function
that

(4.3.4 )
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Hence, for f = 1 we have Gn(a, f) = f Therefore, for a fixed 1J > 0

IGn(a, j, x) - f(x)1 ~ An(a, x) f If(t) - f(x)1 K~(a, x, t) da(t)
Ix-tl ~b

+ An(a, x) f If(t) - f(x)1 K~(a, x, t) da(t).
Ix-tl>b

By (4.3.4) we have

An(a, x) f If(1) - f(x)1 K~(a, x, t) da(t) ~ w(j,J)
Ix-tl~b

for all xEL1, where w(j, J)=suPlx_tl~b.xEL1lf(x)-f(1)1 is the modulus of
continuity of f Moreover, by the Christoffel-Darboux formula (4.3.2),

)~n(a, x) f If(t) - f(x)1 K~((X, x, t) da(t)
Ix-tl >b

~ 21Ia(a)11 00 Ilflloo J -2 An(a, x)(p~(a, x) + p~ -1 (a, x))

for all x E L1, where Ila(a)lloo = sUPn",° lan(a)1 < 00 (cf. (1.4 )). Combining the
last three inequalities, we obtain

IGn(a, j, x) - f(x)1

~w(j, (5)+21Ia(a)1100 Ilflloo J-2)~n(a, x)(p~(a, x)+ p~_1(a, x))

for all x E L1. Since a E M (b, a), by Theorem 2.1 we have

lim sup IGn(a, j, x) - f(x)1 ~w(j, (5)

for every J > O. Since f is uniformly continuous in L1, w(j, (5) -y 0 as (j -y 0,
which proves (4.3.3). I

4.4. Christoffel Functions and Cotes Numbers

COROLLARY 4.4.1. If a E M(b, a) with a> 0 and bE IR, then for every
fixed integer m

1· !An+m(a, x) 11 01m max - =.
n~oo xE[b-a,b+a] )'n(a, x)

Proof First let m be negative. Then it follows from the definition of
Christoffel functions (4.0.1) that

An+m(a, x) n~1 2(.) 1 ( )1 :;::, = 1 - L., Pk a, x /"n + m a, x
An(a, x) k~n+m

n-1
:;::'1- L p~((X,x)Ak(a,x).

k=n+m
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Since m is fixed and each term in the last sum converges to zero uniformly
in [b - a, b + aJ (cf. Theorem 2.1), and this proves Corollary 4.4.1 for
negative m's, whereas for positive m's we can simply take reciprocals. I

Given a measure ct and a function g, we define the new measure ctg by

dctg = g dct.

The following result gives comparative asymptotics of the two Christoffel
functions An(ct) and An(ctg ).

COROLLARY 4.4.2. Let ct E M(b, a) with a>°and b E~, and let g;?;°on
~. Assume that there is a polynomial lIm such that IImg and lIm g ~ 1 are
both uniformly continuous in a set As; [b - a, b + aJ, and they are both
uniformly bounded in ~. Then

g(X)

uniformly in every compact subset of A void of zeros of lIm' In particular,
if g is bounded and strictly positive in ~, and it is continuous in [b - a, b + aJ,
then the convergence is uniform in the entire interval [b - a, b + aJ.

For the partial case when A is either a single point in [b-a, b+aJ or
A c (b - a, b + a) is a closed interval, this corollary was proved in [10,
p. 78, Theorem 6.2.6]. Before the proof, we point out that Corollary 4.4.2
enables one to find the asymptotic values of the Cotes numbers in the
Gauss-Jacobi quadrature process (cf. [17, p. 47J)

where {Xkn(ct)}%= 1 are the zeros of the orthogonal polynomials Pn(ct), and
the Cotes numbers Akn(ct) are given by Akn(ct) = An(ct, Xkn(ct)). For instance,
if ct is the Chebyshev measure, that is, dct(x) = (1 - x 2

) -1/2 dx in [-1, 1J
then the Christoffel functions An(ct) can explicitly be computed (cf. [10,
p. 79, Example 6.2.8J). For the Cotes numbers associated with the measure
ctg , we have

uniformly for n = 1, 2, ..., and k = 1, 2, ..., n, where Um is the second kind
Chebyshev polynomial of degree m, that is, Um (x)=sin((m+l)e)jsine,
x=cos e. .



ORTHOGONAL POLYNOMIALS 233

Proof of Corollary 4.4.2. Pick a compact subset of Ll void of zeros of
JIm' say, K. As in [10, p. 77, Theorem 6.2.5J or [12, PP. 20--21, Theorem
4.5.8 J we have

and
.A.n(ag , x) 1 2

1 ( )~II2( ) Gn_m(a, JImg, x).
An_ma,X m X

(4.4.1)

(4.4.2)

Since II;, g ± 1 and a satisfy the conditions of Corollary 4.3.1 we obtain

1. 1 ( II~) 1
1m JI2( )Gn + m a,-,x =-()

n-HXJ mX g gx
and

uniformly for x E K. Applying Corollary 4.4.1 to the left sides of inequalities
(4.4.1) and (4.4.2) we obtain

and

uniformly for x E K. This completes the proof. I
Another application of Corollary 4.3.1 is related to generalized

Christoffel functions A n(a) which is defined by

An(a, N, h, X) = min f 111(tW da(t),
deg II < n,II(Xj) ~ h(Xj) U'!

where N is a fixed positive integer, X = {XJj~ 1 E IR N
, and h: IR ----+ C

(cf. [l1J), For N = 1 we have An(a, N, h, X) = Ih(X)1 2 )cn(a, X), where An{ex)
is the regular Christoffel function (4.0.1) (cf. [3, p. 25, Theorem 1.4.1 J).

For the class M(b, a), generalized Christoffel functions were investigated
in [11], and a careful analysis of the proof of [11, p. 302, Lemma] shows
that Theorem 2.1 and Corollary 4.3.1 yield

COROLLARY 4.4.3. Let a E M(b, a) with a> 0 and bE IR, let N be a
positive integer, and let h: IR -+ C be bounded. Then for all fixed r > 0

1
· An(a, N, h, X) _ 1
1m N 2 -

n~ 00 Lj~ 1 Ih(Xj)1 An(a, Xj)

uniformly for all X = {XJj~ 1 E [b - a, b +ay such that IXj - Xjl·:;:: r bij'



234 NEVAI, ZHANG, AND TOTIK

5. EPILOGUE

In this paper we considered the relative growth of orthogonal polynomials
associated with measures in M(b, a), and related second order recurrences
of the form (1.1). It is natural to ask what happens to more general
measures, and to higher order linear difference equations with variable
polynomial coefficients. As opposed to the case treated in this paper, the
latter one seems to be much more delicate. Very recently, this was studied
from a more general point of view in [5J, where "sub-exponential" growth
of solutions of certain operator difference equations in normed spaces was
proved. We expect that uniform convergence results similar to Theorem 2.1
may be proved by combining the methods in this paper with those in [5].
Poincare's theorem [13J can still be applied to investigate the asymptotic
behavior of the ratios In+ din of solutions {In} of such higher order linear
difference equations.
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